Inertial Fusion Driven by Heavy-Ion Beams*

W M Sharp and the HIFS-VNL team

Heavy Ion Fusion Science Virtual National Laboratory

Outline

- motivation
- a fusion primer
- essentials of heavy-ion fusion
- past and present HIF research
- future research directions

fission and fusion both produce energy from nuclear forces

mass is lost when large nuclei split or small ones merge

- this mass converted to energy according to E = mc²
- energy escapes as kinetic energy of particles or nuclei, or as gamma rays

So why is nuclear energy interesting?

carbon-free! plentiful

- uranium reserves, properly used, could last for centuries
- deuterium in a gallon of sea water equals four gallons of gasoline

versatile

• nuclear energy can produce electricity, hydrogen, synthetic fuels, desalinated water, ...

highly concentrated

annual fuel requirement for a 1000 MW_e power plant is

2.1 x 10⁶ metric tons of coal - about 21 000 rail cars

10⁷ barrels of oil - about 10 super tankers

30 metric tons of UO₂ - about one rail car

0.6 metric tons of deuterium - one pickup truck

Outline

- motivation
- a fusion primer
- essentials of heavy-ion fusion
- past and present HIF research
- future research directions

What are the candidate fusion fuels?

the original - primary reactions in the sun

 $p^{+} + p^{+} \rightarrow D + e^{+} + v_{e} + 0.43 \text{ MeV}$

~1 keV (10^7 °C) with D = deuterium ($^2H^+$)

 $p^+ + D \rightarrow ^3He + \gamma + 5.49 MeV$

the easiest

D + T \rightarrow ⁴He + n + 17.6 MeV

~10 keV (10 8 °C) with T = tritium ($^3H^+$)

"advanced" fuels

D + D \rightarrow ³He + n + 3.3 MeV ~30 keV (3 x 10⁸ °C)

~50 keV (5 x 10⁸ °C)

 \rightarrow T + p⁺ + 4.0 MeV

D + ${}^{3}\text{He} \rightarrow {}^{4}\text{He} + p^{+}$ + 18.4 MeV

"ultimate" fuels

 $p^{+} + {}^{11}B \rightarrow {}^{4}He + {}^{4}He + {}^{4}He + 8.7 MeV$

 $p^+ + {}^7Li \rightarrow {}^4He + {}^4He + 17.3 MeV$

 $p^{+} + {}^{9}Be \rightarrow {}^{4}He + {}^{6}Li + 2.1 MeV$

a note on energy units:

1 eV (electron-volt) = 1.602×10^{-19} Joules. Characteristic of energy changes in *atomic* processes

1 MeV = 1.602×10^{-13} Joules. Characteristic of energy changes in *nuclear* processes

Why has controlled fusion taken sixty years?

fusion depends on quantum-mechanical tunneling of energetic nuclei

- rate is only appreciable for very energetic ions (> 10 keV or 10⁸ °C)
- electrons and nuclei dissociate, making a thermal plasma
- holding a D-T plasma together long enough is a major challenge

How can we achieve controlled fusion?

three main ways

grativational confinement

"a day without fusion is like a day without sunshine"

magnetic confinement

"...like holding jello together with rubber bands" - Edward Teller

inertial confinement

"A small supernova. Very small" - Ed Moses

	density	temperature	confinement time	status
gravitational	10 ⁴ x solid	1 keV	10 ⁵ years	proven daily
magnetic	10 ⁻⁸ x solid	10 keV	seconds	first test 2020
inertial	10 ³ x solid	10 keV to ignite	10's of picoseconds	first test 2011

How can we achieve controlled fusion?

three main ways

grativational confinement

"a day without fusion is like a day without sunshine"

"...like holding jello together with rubber bands" - Edward Teller

inertial confinement

"A small supernova. Very small"
- Ed Moses

	density	temperature	confinement time	status
gravitational	10 ⁴ x solid	1 keV	10 ⁵ years	proven daily
magnetic	10 ⁻⁸ x solid	10 keV	seconds	first test 2020
inertial	10 ³ x solid	10 keV to ignite	10's of picoseconds	first test 2011

How can we achieve controlled fusion?

three main ways

grativational confinement

"a day without fusion is like a day without sunshine"

magnetic confinement

"...like holding jello together with rubber bands" - Edward Teller

"A small supernova. Very small"
- Ed Moses

	density	temperature	confinement time	status
gravitational	10 ⁴ x solid	1 keV	10 ⁵ years	proven daily
magnetic	10 ⁻⁸ x solid	10 keV	seconds	first test 2020
inertial	10 ³ x solid	10 keV to ignite	10's of picoseconds	first test 2011

What goes on in the target?

input energy quickly heats surface of fuel capsule

fuel is compressed isentropically by rocket-like blowoff of hot surface material

compressed fuel core ("hotspot") reaches density and temperature needed for ignition

thermonuclear burn spreads quickly through compressed fuel

How much compression is needed?

the fusion capsule before compression

How much compression is needed?

10 ns later after 30:1 compression

What's needed for an inertial fusion energy power plant?

Outline

- motivation
- a fusion primer
- essentials of heavy-ion fusion
- past and present HIF research
- future research directions

If laser fusion is expected soon, why bother about heavy-ion fusion?

repetition rate

NIF can manage 1-2 shots per day

a power plant needs 5-10 shots per second, and accelerators can provide 1000s efficiency

NIF lasers are less than 1% efficient, and advanced high-repetition lasers may get 15% induction accelerators for ions should get about 40%

robust final optics

laser final optics are directly exposed to target blast

focusing magnets for ions do not intercept the line-of-sight from the target

thick-liquid walls

laser power-plant concepts call for periodic replacement of the chamber inner wall heavy-ion power-plant concepts use molten Li₂BeF₄ salt ("FLiBe") to absorb blast

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams
 then you can start designing

What target to use?

targets range from low-risk / low-gain to high-risk / high-gain

higher gain can either increase yield or lower driver cost

So what would a HIF target look like?

several indirect-drive designs were developed in the 1990s

- two energies are needed to compensate for range-shortening with heating
- beams are aimed around an annulus on each end to give needed symmetry
- early 6-MJ version had a gain of 60

• smaller 3.3-MJ version had a gain of 130

current work is investigating advanced direct-drive concepts

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?
 gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams

What ion species to use?

going down in ion mass decreases energy but increases current or number of beams

• for indirect drive (number of beams) x (current) x (deposition time) x ($\frac{1}{2}m_bv_z^2$) \approx 1-10 MJ

What ion species to use?

going down in ion mass decreases energy but increases current or number of beams

for indirect drive

(number of beams) x (current) x (deposition time) x ($\frac{1}{2}m_bv_z^2$) \approx 1-10 MJ

What ion species to use?

going down in ion mass decreases energy but increases current or number of beams

for indirect drive

(number of beams) x (current) x (deposition time) x ($\frac{1}{2}m_bv_z^2$) \approx 1-10 MJ

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams

What kind of accelerator to use?

most accelerators are radio-frequency (rf) devices

- rf accelerators can have gradients up to 100 MeV/m
 but
- current is typically limited to less than 200 mA
- beams cannot be shortened during acceleration
- rf drivers need beam storage and stacking

induction accelerators are an attractive alternative

- currents up to 10 kA have been demonstrated
- beams can compressed during acceleration
- absence of resonant structures improves stability
 but
- acceleration gradient typically averages 1 MeV/m
- symmetry on target demands at least 100 beams

How does an rf accelerator work?

all types of rf accelerators share a simple design concept

- tuned cavities are filled with rf fields
- beams see only accelerating phase of oscillating electric field
- cavity field profile provides automatic control of beam ends

major limitation is low current

- current must be accumulated for 4 ms to provide energy for indirect-drive target
- various stacking schemes have been proposed to achieve 4 x 10⁵ compression

What are some possible layouts for a HIF driver?

multiple rf linacs

What are some possible layouts for a HIF driver?

rf synchrotron

What are some possible layouts for a HIF driver?

single rf linac plus stacking rings

Theorist's view of an induction cell

a 1:1 transformer

beam acts as a "single-turn" secondary

changing flux in the ferrite core induces an electric field E_z along the axis applied voltage waveform determines rate of flux change in the core and hence $E_z(t)$

Electrical engineer's view of an induction cell

a transmission line with a matched load

- core provides inductive isolation for the pulser
- pulser impedance is matched to beam plus any shunt resistance

Electrical engineer's view of an induction cell

induction-cell efficiency is set by leakage current through core $f = I_{beam} / I_{tot}$

- eddy currents are main cause of core leakage
- loss is area inside core hysteresis loop
- choice of core material requires tradeoffs between flux swing, losses, and cost

simplest layout applies pulser voltage directly to electrodes

main problem is high voltages on accelerator components relative to ground

accelerator be can grounded by connecting electrodes

main problems are low voltage across gap and large leakage current

ferromagnetic core can be added to inductively isolate electrodes

- at constant voltage, cell appears as a nearly resistive load
- little interaction between beam and core, allowing large currents

components can be moved around to reduce transit-time effects

How to conceptualize an induction cell - step 4

components can be moved around to reduce transit-time effects

reverse the pulser polarity

How to design an induction cell - step 4

components can be moved around to reduce transit-time effects

reorient the power feed to shrink the gap

How to conceptualize an induction cell - step 4

components can be moved around to reduce transit-time effects

add a solenoid or quadrupole for transverse focusing

Mechanical engineer's view of an induction cell

an assemblage of precision parts

What are some possible layouts for a HIF driver?

multiple-beam induction linac

What are some possible layouts for a HIF driver?

multiple-beam induction linac with merging

What are some possible layouts for a HIF driver?

induction "recirculator"

So how do we choose?

both rf and induction accelerators have strengths and weaknesses

- rf accelerators offer greater familiarity and higher gradients
- induction accelerators offer simplicity and higher current

adapted from S. Atzeni in *Physics of Multiply Charged Ions* (Plenum, 1995)

HIF programs in Europe and Japan favor rf accelerators
US HIF program prefers induction drivers

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams

How does solenoid focusing work?

conservation of canonical angular momentum causes a beam in a solenoid to spin

- resulting $v \times B$ force pushes beam ions toward the axis
- space charge ("perveance") and transverse temperature ("emittance") push ions apart
- a balance of these forces set the beam equilibrium radius

$$I_{\text{max}} \approx \frac{\pi \varepsilon_0}{2} \frac{q r_b^2 \mathbf{v}_z}{m} B_z^2$$

from MIT Physics 8.02 course material

How does quadrupole focusing work?

quadrupoles squeeze the beam alternately in the two transverse directions

- can use electric or magnetic fields
- electric quads work best at low beam velocity. magnetic quads, at high velocity.

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams

Drift-compression is used to shorten an ion bunch

induction cells impart a head-to-tail velocity gradient ("tilt") to the beam

- the beam shortens as it "drifts" down the beam line
- without neutralization, space charge opposes compression, leading to a nearly monoenergetic compressed pulse

• in neutralized drift-compression, space charge is eliminated, resulting in a shorter pulse but a larger velocity spread

How does neutralized compression work?

beam space charge can be neutralized by a sufficiently dense plasma

- plasma density should be 3-10 times beam density
- neutralized beam drags electrons with in into the chamber
- additional neutralization is provided by photoionization plasma around hot target
- increased beam charge state from collisional and photo stripping has minor effect

How do you design an HIF power plant?

many interrelated questions must be answered first

- what target to use?
 gives the total energy, beam spot size, symmetry requirements
- what ion species to use?gives the beam energy and total current
- what type of acceleration to use?
 determines the complexity, efficiency, and cost of plant
- what type of transverse focusing to use?
 transport limits determine the number and radius of beams
- what type of fusion-chamber transport to use?
 space-charge, energy spread, and transverse temperature impair beam focus
- what type of fusion-chamber protection to use?
 choice between liquid and solid depends on the target design and number of beams

How does a thick-liquid wall work?

curtains of neutronically thick liquid (Li, LiPb, Li₂BeF₄) surround the fusion target

- cavities are formed by oscillating liquid curtains
- targets are injected into cavities
- cavity ends are protected by crisscrossed liquid jets
- ion beams enter cavities through holes between jets
- liquid carries heat to generator
- lithium in liquid breeds tritium for targets
- tritium and debris are removed from fluid

approach was introduced in 1996 HYLIFE-II study

from R W Moir, Fusion Eng. Design 32-33, 93 (1996)

Liquid FLiBe walls have been studied in scaled experiments

UCB group modeled HYLIFE-II walls with hydrodynamically equivalent water jets

- flow conditions approach correct Reynolds and Weber numbers of molten FLiBe
- jets, curtains, and vortices have all been studied experimentally

Outline

- motivation
- a fusion primer
- essentials of heavy-ion fusion
- past and present HIF research
- future research directions

Fanciful picture of an HIF power plant...

artist's conception from the 1980s

- ~ 1-3 MeV
- \sim 1 A/beam x \sim 100 beams
- ~ 20 μs

- ~ 1-10 GeV
- ~ 1-10 GeV
- ~ 200 A/beam
- ~ 2000 A/beam

~ 100 ns

~ 10 ns

beam physics is dominated by space charge perveance $\sim 10^{-4}\text{-}10^{-3}$ tune depression $\sim \sigma/\sigma_0 < 0.1$

most driver functions have been investigated separately in scaled experiments

produced low-emittance driver-scale beam

established attractive scaling of transportable current through 86 electrostatic quads

accelerated and compressed four-beams with electrostatic focusing

merged four beams with minimal emittance growth

electrostatic and magnetic transport of driver-scale beam filling large fraction of aperture

replicated physics of HIBALL-II focus on reduced scale

demonstrated neutralized drift compression with current and power amplification routinely above x50

The NDCX-II project is well underway

DOE Fusion Energy Sciences office approved NDCX-II in 2009.

- \$11 M funding was provided via the American Recovery and Reinvestment Act
- construction of the initial configuration began in July 2009
- project completion is due by March 2012
- commissioning might begin in fall 2011
- HEDP target experiments will follow

LLNL donated 50 induction cells from the ATA electron accelerator

ferrite cores each provide 1.4 x 10⁻² Volt-seconds

Blumlein voltage sources offer 200-250 kV with FWHM duration of 70 ns

- NDCX-II needs custom voltage sources < 100 kV at low energy
- ion beam requires stronger (3T) pulsed solenoids and other cell modifications

12-cell NDCX-II baseline layout

12-cell NDCX-II baseline layout

12-cell NDCX-II baseline layout

NDCX-II plasma sources will be based on NDCX-I design

NDCX-II will enable WDM experiments near the boiling point of many metals

Why use ions to create high energy density?

ion beams are complementary to laser heating features

- classical energy deposition without x-rays and electron preheat
- volume deposition rather than surface heating → large heated volume
- possibility of uniform deposition to a few percent
- precisely controlled beam parameters
- high repetition rate → high data rate

Drift-compression is used twice in NDCX-II

initial non-neutral drift-compression for

- optimum use of induction-core Volt-seconds
- early use of 70-ns 250-kV Blumlein power supplies from ATA

final neutralized drift-compression to the target

- plasma electrons move to cancel the beam electric field
- requires $n_{\rm plasma} > n_{\rm beam}$ for this to work well

lots and lots of simulation

 ASP is a new, fast 1-D (z) particle-in-cell code to develop acceleration schedules

1-D Poisson solver with an approximate transverse derivative realistic z profile on acceleration-gap fields many optimization options

Warp is our full-physics simulation code

1, 2, and 3-D ES and EM field solvers first-principles and approximate models of lattice elements space-charge-limited and current-limited injection cut-cell boundaries for internal conductors in ES solver Adaptive Mesh Refinement (AMR) in ES and EM field solvers large Δt algorithms (implicit electrostatic, large $\omega_c \Delta t$) emission, ionization, secondaries, Coulomb collisions... parallel processing with 1, 2 and 3-D domain decomposition and loads more...

1 mA/cm² Li⁺ ion source

third, iterate with ASP to find an acceleration schedule that delivers a beam with an acceptable final phase-space distribution

250 kV "flat-top" measured waveform from test stand

200 kV "ramp" measured waveform from test stand

"shaped" for initial bunch compression (scaled from measured waveforms)

"shaped" to equalize beam energy after injection

3-D Warp run of 12-cell baseline case with perfectly aligned solenoids

40ga24-12 simulation and movie from D P Grote

40g-12 with random timing shifts in acceleration voltage pulses

40g-12 with random offsets to both ends of each solenoid

Warp runs illustrate effects of solenoid alignment errors

plots show beam deposition for three ensembles of solenoid offsets

- maximum offset for each case is 0.5 mm
- red circles include half of deposited energy
- smaller circles indicate hot spots

ASP runs show steering can stabilize spot location

see Y-J Chen, et al., Nucl. Inst. Meth. in Phys. Res. A 292, 455 (1990)

Small-scale experiments are studying long-path transport physics

University of Maryland Electron Ring (UMER)

- ring under construction since 1997
- completed in 2008
- low-energy electrons model intense ion beams
- dimensionless space-charge intensity similar to HIF driver
- beam has successfully completed 100s of laps

Paul Trap Simulator Experiment (PTSX)

- operating at PPPL since 2002
- oscillating electric quadrupoles confine ions
- equivalent to 1000s of lattice periods

What are other countries doing?

Germany - GSI

 FAIR (Facility for Antiproton and Ion Research) is being built major upgrade of current and energy for existing accelerator complex 5 x 10¹¹ ions at 150 MeV/u in a 50-100 ns pulse

- HEDgHOB program will use FAIR to study high-energy-density physics
- LAPLAS (LAboratory Planetary Science) will FAIR to study physics of Jupiter-like planets

Russia - ITEP

- TWAC (TeraWatt ACcumlator) is complete
- multiple rings accelerate ions to 200 GeV/ion
- laser ion source for high-charge-state Al, Fe, and Ag ions
- rf "wobbler" developed to produce circular focal spots improves the deposition symmetry could allow use of fewer beams

Japan and China

- numerical work on beam transport, focusing, and target physics
- Paul Trap research at Hiroshima University

Outline

- motivation
- a fusion primer
- essentials of heavy-ion fusion
- past and present HIF research
- future research directions

Upgrades can significantly enhance NDCX-II capabilities

adding cells to NDCX-II will enable investigation of short ion pulses

- short pulses are needed for direct-drive shock ignition
- 50 ATA cells are available

NDCX-II experiments can model driver-like final transport

unneutralized driver beams approach target in curving drift-compression lines

- they pass through final-focusing magnets as they reach stagnation
- neutralized transport is used after final focus

New ideas for improving HIF accelerators are being explored

pulse-line ion accelerator (PLIA)

- helical slow-wave structure replaces cores
- gradients of 3-5 MeV/m are theoretically possible
- simplicity and low cost are attractive

dielectric-wall accelerator promises a higher gradient

- uses layered dielectrics to permit gradient up to 30 MeV/m
- electron version has been built
- proton model may find therapeutic use

solid-state pulsers for pulse shaping

- programmable waveforms
- reduced resistive losses

induction accelerators with higher charge state

Take-aways

fusion promises unlimited future energy if a competitive reactor can be developed inertial fusion has advantages over magnetic confinement

- separation of the driver from the fusion reaction → safety, ease of maintenance
- proof of principle imminent at NIF
- modularity can reduce driver cost
- many, many design options

heavy-ion inertial fusion has advantages over laser drivers

- higher efficiency
- higher repetition rate
- possibility of liquid-protected walls
- robust final optics

much of the physics of HIF drivers has been tested in scaled experiments

- other aspects can be tested on NDCX-II
- full-scale integrated demonstration of HIF driver is still needed

read more about HIF research at hifweb.lbl.gov/public/Sharp/HIF_overview.pdf